Contact Term Contribution to Lanthanide-induced ¹³C Nuclear Magnetic Resonance Shifts in Pyridine and β-Picoline

By MASATOSHI HIRAYAMA,* ETSUO EDAGAWA, and YOSHIAKI HANYU

(Department of Chemistry, Faculty of Science, Ibaraki University, Bunkyo, Mito, Japan, and Naka Works, Hitachi Co., Ltd., Katsuta, Ibaraki, Japan)

Summary There is a large contact term contribution to ¹³C paramagnetic shifts induced by $Eu(dpm)_3$, $Pr(dpm)_3$, and $Eu(fod)_3$ in pyridine and β -picoline; this contribution may not be due mainly to spin delocalization through π -bonds.

ALTHOUGH it is generally accepted that paramagnetic shifts induced by some lanthanide complexes are mainly due to pseudo-contact interaction,¹ it has been recently reported that abnormal shift values are observed for atoms (14N), co-ordinated to the lanthanide ion² and for ¹³C or ¹H nuclei close to the co-ordinating atom in some aliphatic compounds.³ Johnson et al. have reported that abnormal relative ¹H shift patterns are observed for substituted pyridine N-oxides and anilines with some lanthanide complexes, and that the shift patterns for these substrates with Eu(fod)₃ are characteristic of a contact interaction attributed to π -spin density.⁴ For pyridine derivatives, the observed shifts induced by $La(dpm)_3$ (La = Pr, Eu, and Yb) could be interpreted approximately in terms of a pseudo-contact interaction only by using a distance between nitrogen and lanthanide ion of 4 Å.⁵ Huber et al. tentatively took account of the contact term contribution through π -bonding by using the Hückel spin distribution of quinoline anion radical, to obtain better predicted values,⁶ but the agreement is not good.

We report here observed ¹³C paramagnetic shifts induced by Eu(dpm)₃, Pr(dpm)₃, and Eu(fod)₃ for pyridine and β -picoline, and discuss the contact term contribution.

The observed ¹H and ¹³C shifts for pyridine and β -picoline are shown in Table 1 with the related pseudo-contact shifts calculated from the geometric factor $(3\cos^2\theta - 1)/r^3$. Although the observed relative shifts for ¹H can be explained with the pseudo-contact term only by using a value of $r_{\rm N}$ (the nitrogen-lanthanide distance) of $3\cdot00$ Å,⁵ those for ¹³C disagree completely with the values predicted on this basis. With Eu(dpm)₃ and Eu(fod)₃, the large upfield shift component is clearly included in the β -¹³C resonance. These results thus show the existence of a much larger contact term contribution for ¹³C than for ¹H. The agreement between the observed relative shifts with those calculated using only the pseudo-contact term for ¹H is presumably not co-incidental, and so the other term is not required. The most suitable values for K in the equation $S_{pcs} = (3\cos^2\theta - 1)/r^3 \times K$ for pyridine are 594, 1776, and 880 with Eu(dpm)₃, Pr(dpm)₃, and Eu(fod)₃ respectively. The S_{pcs} values for ¹³C calculated using K = 594 are shown in Table 2.

 $Eu(dpm)_3$ and $(fod)_3$

FIGURE. Scs patterns for ¹³C.

Pr(dpm)

Observed S values for pyridine obtained with Eu(dpm)₃ in CHCl₃ (or CDCl₃) are used to discuss the ¹³C contact term in detail. The contribution to the lanthanide-induced shift other than that from the pseudo-contact term may be considered to be only that due to the contact term (S_{cs}) (see Table 2). Assuming that S_{cs} arises only through π -bonds (S_{π}), the hyperfine coupling constants a^{c} and a^{H}

$$S = S_{pcs} + S_{cs}$$

were estimated from McLachlan's spin distribution⁷ in the pyridine anion radical by using the approximation that the bonding orbital formed between an *f*-orbital on Eu containing an unpaired electron and a π^* -MO of pyridine may be regarded as a π^* -MO itself. The following values for σ - π interaction parameters in the McConnell and the Karplus-Fraenkel equation⁸ were used.

 $Q_{CH}^{th} = -23.0 \text{ G}$ in the equation $a^{tt} = Q_{CH}^{th} \rho_{C}^{c}$, $Q_{CN}^{c} = 4.0 \text{ G}$ and $Q_{NC}^{c} = -20.5 \text{ G}$;⁹ Q^{c} values for C and H, and C and C are given by

$$a^{\mathrm{c}} = (S^{\mathrm{c}} + \sum_{i} Q^{\mathrm{c}}_{\mathrm{CX}(i)}) \rho^{\pi} + \sum_{i} Q^{\mathrm{c}}_{\mathrm{X}(i)\mathrm{C}} \rho_{i}^{\pi}$$

			Pyridine					
Eu(dpm) 3	•••	•••	13C	$\overbrace{-67.5}^{\alpha}$	β + $3\cdot 5$ $4\cdot 46$	γ -23.0		
Pr(dpm) ₃			¹³ C	+93.5	+25.8	+25.8		
Eu(fod) ₃	•••	• •	18C 1H	+35.3 -43.5 -18.0	+12.7 +14.5 - 6.25	+10.6 -11.0 -6.10		
Calc. ^b	•••	•••	18C 1H	1.00 1.00	0·42 0·36	0·34 0·30		
					β-Picoline			
Eu(dpm) 3			¹³ C 1H	$\overbrace{\left\{\begin{matrix} -78\cdot3\\ -75\cdot3\\ -17\cdot5\end{matrix}\right.}^{\alpha}$	$ \begin{array}{c} \beta \\ - 4.7 \\ - 3.8 \\ - 6.1 \end{array} $	$-\frac{\gamma}{26\cdot 6}$ $-5\cdot 8$	$\frac{\beta \cdot \mathrm{Me}}{-8 \cdot 9}$ $-4 \cdot 0$	
Pr(dpm) ₃			18C 1H	$\begin{cases} +86.5 \\ +79.5 \\ +38.6 \end{cases}$	+22.6 +21.8 +14.0	+-25·9	+ 9.7 + 8.6	
Calc. ^b		••	13C 1H	1.00 1.00	0·42 0·36	0·34 0·30	0.21	

TABLE 1. Observed paramagnetic shifts, S^a

^a S is the lanthanide-induced shift in p.p.m. obtained by linear extrapolation to a complex-substrate ratio of 1.0. Negative signs designate shifts to lower field. ¹³C spectra were recorded at 22.63 MHz with a Hitachi R-22 spectrometer with a R-228 proton wide band decoupler and a A-1600A signal averaging analyser, and ¹H spectra with a Hitachi R-20A spectrometer at 60 MHz, both spectrometers operating in the frequency-swept mode. Solutions were ca. 2.0M for ¹³C and ca. 0.5M for ¹H. The amount of lanthanide complex was continuously varied up to a complex-substrate molar ratio of 0.2. CHCl_s was the solvent for ¹³C and CDCl_s for ¹H. ^b Geometric factors relative to the α -position.

TABLE 2. Contact term contribution in the Eu(dpm)_s-pyridine system

	Sobsa	$(3\cos^2\theta - 1)/r^3$	Spesb	S _{cb} c	S_{π}	a^{C} or a^{H}
х-Н 0 ц	12.16	0.02045	-12.15	-0.01	+ 3.00B	-3.00
р-11 у-Н	-3.86	0.00615	-3.65	- 0.03 - 0.21	+ 9.66B	-9.66
х-С 8-С	-67.5 + 3.5	0.03032 0.01274	-18.01 -7.57	-49.49 + 11.07	$^{+14\cdot 56\mathrm{B}}_{+32\cdot 64\mathrm{B}}$	-3.64 - 8.16
γ-C	-23.0	0.01036	- 6.15	-16.85	-61.60B	+15.40

^a Observed shifts. ^b Pseudo-contact term using K = 594 and $r_N = 3.00$ °A. ^c S_{obs} - S_{pes}.

From the contact shift equation and the relation $\gamma_{\rm II}/\gamma_{\rm C}$ = ca. 4, the π -contact term is $-a^{\mathbf{H}} \cdot B$ for ¹H and $-4a^{\mathbf{C}} \cdot B$ for ¹³C, where B is a constant. Comparison of S_{CS} with the S_{π} values for ¹H in Table 2 shows that the limiting B value is ca. 0.1 at most, and, therefore, S_{π} for ¹³C is -0.4 a^C. The π -contact contribution for ¹³C would thus be very small, even if it were present at all, and may be due mainly to another spin transfer mechanism which affects ¹³C much more than ¹H. The shift patterns due to this effect with $\operatorname{Eu}(\operatorname{dpm})_3$ and $\operatorname{Eu}(\operatorname{fod})_3$ are downfield for α - and $\gamma^{-13}C$ and up field for β -¹³C (Figure). The sign alternation is opposite

to that observed for the Ni(acac)₂-pyridine system where the σ -contact term has already been shown to be the main contributor to the paramagnetic shift.¹⁰ S_{CS} values for ¹³C in the Pr(dpm)₃-pyridine system are positive for all positions

Although the spin-transfer mechanism is still under investigation, we assume that a positive spin induced directly at α^{-13} C by Eu contributes to the ¹³C paramagnetic shifts induced by $Eu(dpm)_3$ and $Eu(fod)_3$.

(Received, 29th September 1972; Com. 1673.)

- M. Karplus and G. K. Fraenkel, J. Chem. Phys., 1961, 35, 1312.
 A. H. Maki and E. W. Stone, J. Chem. Phys., 1963, 39, 1653.
- ¹⁰ I. Morishima, T. Yonezawa, and K. Goto, J. Amer. Chem. Soc., 1970, 92, 6651.

¹ W. D. Horrocks, jun. and J. P. Sipe, tert., J. Amer. Chem. Soc., 1971, 93, 6800, and references therein.
² M. Witanowski, L. Stefaniak, H. Januszewski, and Z. W. Wolkowski, Tetrahedron Letters, 1971, 1653; Chem. Comm., 1971, 1573.
³ J. Briggs, F. A. Hart, G. P. Moss, and E. W. Randall, Chem. Comm., 1970, 1506; R. J. Cushley, D. R. Anderson, and S. R. Lipsky, J.C.S. Chem. Comm., 1972, 636; M. Kainosho, K. Ajisaka, and K. Tori, Chemistry Letters, to be published.
⁴ B. F. G. Johnson, J. Lewis, P. McArdle, and J. R. Norton, J.C.S. Chem. Comm., 1972, 535.
⁵ J. Reuben and J. S. Leigh, jun., J. Amer. Chem. Soc., 1972, 94, 2789.
⁶ H. Huber and C. Pascual, Helv. Chim. Acta, 1971, 54, 913.
⁷ A. D. McLachlan, Mol. Phys., 1960, 3, 233.
⁸ M. Karolus and G. K. Fraenkel, J. Chem. Phys., 1961, 35, 1312.